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CHAPTER 1 

ELEMENTS OF CONTROL PROCESSES 

This chapter is introductory in nature, serving to introduce 

terminology, notions, and assumptions. 

by readers  intimately familiar with control theory. 

It may be skimmed through 

1.0 THE PROCESS EQUATIONS 

In this thesis we a r e  concerned with control of processes 

which a r e  characterized by differential equations of the form 

dx 

dt 1 n' 
. , u ), ( i = 1 , 2 , .  . . n) 

r 
- i = f .( t ,Xl,X2,.". ,X U1'U2 '"  

o r ,  in vector notation, 

dx 
dt - = f ( t ,x ,u)  

n n n 
in which XE is an n-vector ir, Euclidean spzce , and UE 

is an r-vector which we shall call the control vector. 

is called the state vector. 

portant class of processes which a r e  known as  state-determined 

processes.  That is, at any instant of time t ,  an observed response 

The vector x 

Equation (1.1) is an example of an im- 

1 
T l  
11 

YE 
expressed as 

of the process to a control history u(T), t 5 7 5 t ,  may be 
0 

y(t) = g (t; x(t 0 ), u(t 0 5 7 5 t))  (1 .2 )  

where g has the property 

( 1 . 3 )  

1 



2 -  

Equations ( 1 . 2 )  and (1. 3) indicate that the response depends 

on the past, but that this dependence can be projected into a state 

quantity x at some time and the control history since that t ime. 

The process equations (1.1) is an important element in the 

modern statement of a control problem. 

elements. 

There are four further 

1. A permissible set G of phases (t, x) to 
which the process is restricted; 

A target se t  SCG which must be attained; 

functions; 

control function u (*  ) and its corresponding 
state trajectory x(* ) into 7 R .  

2.  

3. A c lass  a of admissible control t ime 

4. A performance functional J which maps a 

These a r e  discussed below. 

1.1 THE SET OF PERMISSIBLE PHASES, G 

For convenience, we shall  adopt Kalman's t e r m  of phase for 

the time-state pair  (t, x) [which is actually an (n+ l )  -tuple]. 

One can expect that certain restrictions wil l  exist on the 

totality of phases which apply to a given physical process.  

important element of the control problem is a set G C  E x  

which the process equation (1.1) is defined (for a given u) and to 

which the process is restricted.  

for  most problems is the following: 

Thus, an 

on 
n 

A form of G which is general enough 

, 

where T = an interval (finite o r  infinite) in lR 
n 

G = a connected subset of 
t 

(1 .4)  
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There a r e  many reasons why G may be a proper subset of 
n . phase space m x In some cases  they a r i s e  quite naturally f rom 

physical constraints a s  demonstrated by the following two aerospace 

examples. 

Example 1 

An earth satellite is to be tracked by a ground radar  antenna. 

The tracking period is limited to an interval T = [t 

tracking visibility. 

be controlled so a s  to minimize the antenna pointing e r r o r  in some 

sense,  assuming radar  track acquisition commences at t 

In this example the response vector y may be taken to be the 

The state 

t ] due to 
1' 2 

Over this period the antenna's tracking axis must 

1' 

antenna's elevation and azimuth tracking angles, E and A.  

vector would consist of these angles and their derivatives up to a 

sufficient order  to enable the relation of antenna servocontrol torques 

(uE A , u ) to state vector to have the form of (1.1). 

The phase cross-section G c '1R 
n 

would consist of states 

satisfying constraints on E, A,  and their  time derivatives. The 

limitations on the time derivatives may be due, for example, to con- 

straints derived from disk and mount s t ructural  factors.  

G is invariant with time. 

t 

Normally, 

t 

Example 2 

The trajectory o r  orbit of a space probe about a planet is to 

be controlled over an interval T without incurring impact with the 

planet. If we choose x a s  the 6-vector of the probe's position and 

velocity components in some suitable reference frame,  then 



in  which x and x 
P @ 

and a is the planet's radius. 

are the position vectors of the probe and planet, 

(End of Example 2)  

In addition to  restrictions arising directly from problem con- 

straints,  there  are those which can be levied by the control designer. 

In general, not all phases are feasible phases. 

phases may lie on a trajectory which terminates on an assigned tar-  

get se t  s. Therefore admissible solutions to a control process may 

exist for  only a proper subset of phase space. Naturally, if such a 

subset can be determined ahead of time, the control designer wi l l  

insist that motion in phase space be restricted to it. 

That is, not all 

Example 3 

Consider the scalar  process equation 

= ax + u , a = constant > 0; t 2 0 
dx 
dt 
- 

We wish to  select the control for  an initial phase (0,  x ) which causes 

the origin to be reached in minimum time. 
0 

The control must be 

selected from the 

uJ= 
Note that the se t  of s ta tes  which are reachable from x under 

0 

the class a r e  those which satisfy the following equation. 

Since u represents the unit sphere of the space of bounded, measur-  

able functions on T,  and hence is convex, the set of responses 

commencing with x is convex. Thus the reachable states at 
0 
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any time t 2 0 satisfy the inequality 

This condition indicates that the origin can be reached for some 
1 

tc[O, 00) i f  and only if Ix I < - 
0 a 

Thus, the se t  G of permissible phases f o r  this example is 

given by 

1 . 2  THE SET O F  TARGET PHASES, S 

We may assign a set S of permissible phases (t,x)E G which 

constitutes the terminal objectives o r  "right-end" boundary con- 

ditions of the control process. 

It is possible to define S in a manner similar to G,  i. e . ,  

I n 
S = ( t ,x)Emx7R l t t T l  aiid XES C G  I t l  

where 

T = an interval (finite, degenerate, o r  infinite) c T. 1 

However, the assignment of a target se t  in concrete problems usually 

a r i s e s  from rather  specific statements such as the se t  of phases 

satisfying a system of equalities 

Fi(t ,x) = 0 i = 1,.  . . ,S 5 (n+l) 

o r  possibly a system of inequalities 

Fi(t ,x) 5 0 i = 1, .  . . , S 5 2(n+1) 

We shall  consider that S is specified by either of these o r  by 

a possible mixture, and that the functions F . o ,  F a r e  continuously 1' * S 



' 6  . 

differentiable with respect to (t,  x) at least over neighborhoods of 

those phases where one o r  more  of the equalities obtain. 

The definition of S is thus sharpened a s  follows: 

(1.5)  

where (5) indicates the possibility of inequality a s  well for some o r  

all  values of the index i. 

Example 4 

The time-free, fixed right end target s e t  of Example 3 can 

be put into the above form. 

Example 5 

Fixed time, f ree  right end problems a r e  characterized by 

S = (t,x)EG I t  - t = 0 )  I 1 

where t is a constant such that [ t , t  ] c T. 1 1 

Example 6 

If, in the space probe problem of Example 2, we wish instead 
6 and specify to impact with the planet, then we may se t  G = T x m  

1 . 3  THE CLASS O F  ADMISSIBLE CONTROLS, 

The control designer is usually confronted with control 

constraints due to design limitations o r  conditions corresponding to 

physical realizability. 

control vector u at any instant will  be restricted to a subset UC' IR 
Thus, we may expect that the value of the 

r 
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in order  to reflect these conditions and limitations. 

that U satisfies the following conditions : 

We shal l  assume 

1. U is invariant with respect to the instantaneous 

phase (t, x) 
r 

2.  U is a closed, convex set in containing an open 

r -dimens ional sphere. 

In addition to restricting the range of the control functions to  

the set U, we shall  impose the relatively weak requirement that the 

control functions be measurable and essentially bounded over  finite 

time intervals. 

practice we would certainly deal with control functions which are at 

least  piecewise continuous and finite. 

This requirement is not severe,  since in  actual 

Given an initial phase (t ,x )EG, an admissible control is an 
0 0  

element of the function class a defined as follows: 
to 

Finally, the class of all  admissible controls is defined as 

t 
uI=u UI 

t ET o 
0 

We shall  sometimes write ut [U]  and 

particular se t  U upon which the admissible controls depend. 

[ U ]  in order  to indicate a 
0 

Example 7 Unbounded Controls 
r 

With U = , we obtain the (maximal) class of controls which 

have finite Lm-normsJ and hence finite L - norms, over finite 

intervals. 

available resources in concrete problems , the admissible c lass  still 

1 
Since these norms are usually related to energy o r  total 
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retains physical meaning even though we choose to  approximate our 

control set U by m n .  
Example 8 Bounded Controls 

If U is a bounded set ,  then the admissible controls a r e  

uniform2 bounded, measurable functions. In concrete problems the 

bounds might cor respond to saturation limits on torques and voltages 

o r  to mechanical res t ra ints  on actuator deflections. 

1 . 4  THE PERFORMANCE FUNCTIONAL, J 

The f inal  element of our optimum control problem is the 

criterion by which we measure the relative meri t  of admissible con- 

t ro l  functions. Various measures  of performance a r e  possible such 

as the time o r  control effort required to attain the  target set ,  the de-  

viation of the state, at  an assigned final time, from a desired state, 

or the integral square e r r o r  of the state trajectory wrt a desired 

trajectory. These performance measures ,  as well as others in  

common use, can be characterized by functionals which map the 

function triple (., x(.), u ( * ) )  over [ t  t l ] C  T into the real  line. 
0’ 

Strictly speaking, the performance functional is defined only 

for  function triples which satisfy the following properties : 

1. The control function is admissible, i. e . ,  u ( -  ) E  a , 

2. 
t0 

The phase trajectory produced by u ( * )  remains 

within the se t  G of permissible phases and 

reaches the set  S of target phases. 

We shall  use the t e rm feasible to describe admissible controls and 

trajectories which cause condition 2 to obtain. 

In this  thesis we sha l l  consider performance functions of the 

following form: 
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L 
0 

where (to, xo) = initial phase in  G, 

( t l , x ( t l ) )  = terminal  phase in S, 

u = a feasible control function, 6 

and is twice  differentiable i n  x and L' (t,x,u) is 

ferentiable in  (t, x, u). 

ontini 01 

(1.7) 

s ly  dif- 

Owing to the differentiability properties of and L' we may 

replace (1 .7)  by a cr i ter ion of the form: 

where 
a x  

- ax  L(t ,x,u) 4 - f(t, x,u) + L'  (t, x,u), 

and 
a x  a x  , . . ., -) a x  , a row vector. - ax 

- 6  ax  ( 5 s  ax2 axn 

This form differs from (1.7) by an additive t e rm A(x ) which does 

not enter  into relative comparisons of different control functions. 
0 

Note that we have indicated that J is dependent on the initial 

0 0  6' 
phase (t , x  ) and the feasible control function u even though the 

f o r m s  of (1.7)  and (1.8) make it clear that J is a functional of the 

t r iple  ( , x( ), us( - )) . The state-determined property of the 

process  [Equation ( 1 . 3 ) ]  allows this identification. 

For  an initial phase (t x 1, the performance functional in- 
0' 0 

duces a l inear ordering on the se t  Lo of feasible control functions. 
0 

t 



We shal l  assume that A,  L’, o r  L a r e  defined so  that a control u 

considered as good fo r  (t 

is 
(Y 

x ) a s  a control u if 
0 )  0 P 

J(to> x0; Ucu ) = J(t 0 x0; 

0 ,  0 P and bet ter  for (t x ) than u if  

If the control problem is formulated correctly and meaning- 

fully, then we can expect that 

( 2 )  There will be control uake 

0 

O J  xo) 
A feasible control u, satisfying ( 2 . )  is said to be optimal for  (t 

(o r  merely optimal if  i t  is c lear  that we have a particular initial 

phase in mind). 

T 

If condition 1 holds without 2 being necessarily t rue ,  then a 

sequence < u > of feasible controls wi l l  exist such that 
cy 

lim J(toJxo;ua) = inf J(to,xo;u6) 
c y + -  U*€UY 

0 

A control u satisfying 
CY 

J ( t  , x  ; u  ) < inf J( toJxo;u6)  -t E 

U * E q  
O O Q  

0 

fo r  E > 0 will be called €-optimal for  (to, xo). 



Example 9 Final  Value Loss 

Given the target S = {(t, X)EG I t - t l= 0} corresponding to a 

fixed time, f ree  right end problem, we may wish to minimize the 

deviation of the terminal state x(t ) from a desired state x Thus 1 f '  

where h(O) is a differentiable, monotone increasing function of its 

argument. 

function. 

of the final position and velocity of a rocket at an assigned thrust  

termination time. 

In this case,  J assumes the role of a final value loss 

Such a performance measure might be applicable to control 

Example 10 Servomechanism Loss 

We may wish to control the process so  that i t s  state trajectory 

over [ t  t 3 approximates a reference trajectory $(t) in some opti- 
0 ,  1 

m1mx sense. For example 

where h( ' )  has the same properties as in the previous example. 

This type of performance measure might be used in the 

antenna servo problem of Example 1. 

Example 11 Control Cost 

The effort expended to reach a target se t  S is an important 

performance measure which is frequently called upon. Thus, i f  

J ( t  O O C Y  , x  ; u  = c ( t J u  CY ( t ) ) d t  

0 

then we shall call J a control cost functional. For  example C(t ,u) 
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may represent instantaneous power flow in an electrical  network with 

u a s  a control voltage o r  current; J would then correspond to ex- 

pended electrical energy. Or ,  C(t,u) may be the instantaneous 

magnitude of thrust in a throttable rocket engine, and hence J would 

correspond to the total impulse requirement. 

Example 12  Performance Loss with Cost Constraints 

We may wish to combine final value loss X with control cost 

to meet the requirements of Example 9 when control effort is limited 

to a level which is low enough to be significant. Thus 

L 
0 

would be used, where p is a Lagrange multiplier which is adjusted 

to meet the constraint on control cost. 

Similarly, the servomechanism loss of Example 10 may be 

combined in this way with the control cost. 

1 5 FEEDBACK CONTROL LAWS 

The control functions mentioned thus fa r  a r e  time functions 

over some interval. 

able i f  the control vector u could be generated by some function 6 

In many practical problems it would be desir-  

~ 

m 
which would map the instantaneous value of a response vector y e m  

into U. 

briefly, control law. 

Such a function would constitute a feedback control law, o r  

A control law b : YE mm + U E  mr wi l l  be called admissible 

if it generates an admissible control function u EU for every r e -  

sponse function y ( * ) .  Similarly, the te rms  feasible o r  optimal a r e  

applied to it if it generates feasible o r  optimal control functions for 

every response function. 

b 
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In dealing with a control law 6 we shall denote its perfor- 

mance measure by J(t  ,xo;ua) .  

abuse the notation by denoting it as J ( t  

Sometimes it will  be necessary to 
0 

x * 6). 
0’ 0’ 

One important example of a control law is one in which the 

response y is the instantaneous phase ( t ,x )  itself. 



CHAPTER 2 

OPTIMUM CONTROL THEORY 

2 . 0  STATEMENT OF THE CONTROL PROBLEM 

With the assumptions and definitions introduced in Chapter 1, 

we may s ta te  a restr ic ted version of the modern control problem as 

follows : 

A control process  is defined by a given quintuple ( (P, G,  S,&, 1 1  

J), where denotes a state-determined process  defined by 

dx 
dt - = f(t ,x,u) 

in which (t ,x) EG c m x m n ,  U E U C  mr, and f is a mapping from 

G x U into m 
o f m x  En x7Rr containing G x U.  

n which is continuously differentiable in an open region 

We wish to determine controls u(' )E a which cause the phase 
I t  ( t ,x)  to reach S s o  that J is minimized. 

2 
This is essentially the statement given by Pontryagin e t  al . ,  

except that we have required differentiability with respect to (t, x, u) 

rather than merely requiring continuity of f with respect to (t, x, u) 

and differentiability with respect to ( t ,x)  for each UEU.  

summarize Pontryagin's method of solution in Section 2.  2 .  

We shal l  

If we further specify that the control functions u ( * )  be 

then under certain conditions 

This method is sum- 
6 U J  

generated by feedback control laws 

Bellman's method of solution is applicable. 

marized in Section 2. 3 .  

2 . 1  EXISTENCE OF OPTIMAL CONTROLS 

The methods of Bellman and Pontryagin presume existence of 

optimum solutions so that the necessary conditions on which the two 

14 
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methods are based become sufficient if it turns out that only one 

control can satisfy the respective necessity conditions. 

of existence of optimal controls was taken up by Fillipov, 

6 J  7 J  Fillipov provided existence and Lee , Roxin, and others. 

conditions for the time optimal problem even when the control set U 

is dependent on (t,x). 

processes (P in which the control vector u appears linearly in the 

state equations ( 2 .  1) and performance functional J. 

ditions are more general than those of Markus and Lee. 

state a theorem based on his results. 

The question 

Markus 3 

4 5 

Markus and Lee gave existence conditions in 

Roxin's con- 

We shall  

F o r  this theorem we assume that assumptions given in 

Chapter 1 hold (except, of course, the assumption of existence of an 

optimum control), and that G = T x mn. 
Theorem 1 (Roxin) 

Suppose we reexpress the performance functional J given in 

Equation ( 1 . 7 )  in the form of (i.8). 

L 
0 

where the state X E ~ "  is governed by 

dx 
dt - = f(t ,x,u) 

n t l  n t l  so  that ? A  - (f, L) E 'IR 
where U c  mr is compact. 

( to,x ) to a closed target se t  S. 

is a mapping from T xmn x U into 
~ 

Let there be a feasible solution from 

0 
A 

Then an optimal control U,E at [ U ]  exists if f satisfies the 
1. 

0 following: 
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A n 
f is continuous in (x,u) e m  x U for  each tcT, and 

integrable over T for  fixed (x,u) e m  x U. 

(i) 
n 

where 1.1 (t)eL1 over every finite interval, and g 

is finite for  finite arguments but non-integrable over 

intervals of the form [c ,  m], C 2 0. 

For  each (t,  x ) ~  T xmn,  the range of f ( t ,  x ,u)  as u 

describes the se t  U is convex. 

A 

(iv) 

Proof 

Roxin showed that the se t  R(to, x o ) c  T x m n x m  of a l l  reachable 

points of the form (t, x(t), J(t)) , t 2: to, using the c lass  at [U], where 

U is compact, is closed under conditions (i) through (iv). 
0 

Since S is closed, the product s e t  S x m c  T x m n x  mis 

closed. Thus, (S x m )  n R ( t  

by the assumption of existence of a feasible solution. 

sists of all points ( t ,x ,  J)  such that (t,x)eS. 

J-components of this se t  form the totality of performance values J 

for  feasible controls. 

x ) is closed and, further,  nonempty 

This set con- 
0' 0 

In other words, the 

It is closed and nonempty. 

We now use the assumption of Chapter 1 that J is bounded 

from below by a rea l  number to complete ou r  proof. 

(End of Proof) 

Conditions (i) through (iii) of the theorem are essentially 

Caratheodory's condition for  existence, uniqueness, and boundedness 

for  an absolutely continuous solution $(t) = (x(t) , J( t ) )  which sat isf ies  
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2(t = (x 0) for  every u(* )E U . If in Section 2. o we se t  

G = T x m n  and require boundedness of the partial  derivatives of 

f ( t ,x ,u)  and L(t ,x ,u)  with respect to x, then conditions (i), (ii), (iii) 

easily obtain. Condition (iv) and the requirement that U be compact, 
6 however, a r e  st i l l  essential [see Neustadt on removal of (iv)] e 

0 OJ t0 

We cannot apply the theorem directly to the process a s  de- 
n fined in Section 2 . 0  if G tcT, is a proper subset of . If we add 

the condition that a l l  phase trajectories produced by & 
commencing from (t  , x  )EG do not leave G, then existence of an 

optimum control follows 

t' 
[VI and 

0 0  

2 . 2  PONTRYAGIN'S METHOD OF SOLUTION 

In presenting Pontryagin's method we shall  assume that an 

optimal control u, exists, and that there  is a neighborhood of ad- 

missible controls about u.,, which produce feasible trajectories.  

We f i r s t  state his necessary conditions, then discuss how one might 

solve the two-point boundary value problem which a r i ses  in general. 

-r 

T 

Notation 

In the following 

A P = (P1 , . * .  , P ), a row-vector n 
A A  P = (p0,P), an ( n + l )  row-vector 

In general for an m-tuple a = (a , a . D . ,  a ) and an 1 2  m 
n-tuple b = (b 1 , b  2 J " * J b n )  

- _  ab 4 (mxn) matrix of elements (Elij = (q) 
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2, 25 2 . 2 . 1  Necessary Conditions f o r  Optimality 

Theorem 2 (Pontryagin) 

A feasible control u(t) and its corresponding trajectory 

( t ,x ( t ) ) ,  commencing f rom (t x ) and terminating at  (t 1’ x 1 )E S can- 

not be optimal unless the following conditions hold: 
0’ 0 

(i) (The  Minimum Principle) 

There exist an absolutely continuous solution to the 

co-state system 

A A  so that H(t ,x ,u ,P)  = L(t ,x ,u)  + Pf(t ,x ,u)  + P 

satisfies 
0 

H(t,x(t) ,u(t) ,  k t ) )  = inf H(t,x(t),u,$(t)) 
U €  u 

A 
almost everywhere on [ t  0’ t, 3,  and H x(t1)’u(tl), P(tl))=O. 

(ii) (Transversali ty) 

At the terminal phase (t x )ES, the vector (Po(t1), P(tl)) 

is orthogonal to S. 
1’ 1 

(End of Assertion) 

Remarks 

If L J f J  and the se t  St of target  s ta tes  do not depend on t ime, 

then P may be dropped from all considerations. 
0 

If a solution can be found so that transversali ty holds and 

H(t,x(t)Ju(t)J S(t$ = inf H(t, x ( t ) JuJ  %t)) with H = O  at t 1’ then H will 
U€U 



. This is not t rue  in reverse, 
0, 51 automatically be zero  a.e.  [t 

however. 

It is easy to show that Pontryagin’s principle leads to a two- 

point boundary value problem, Let u 

unique function which minimizes H(t,  x, u, P) = L(t, x, u) + Pf(t, x, u) + P 

over the control set U. 

co-state equations , we have 

= k(t, x, P) be the (hopefully) 
2 A  

0 
Then substituting k( t ,x ,P)  into the state and 

dx - = f (t, x, k(t, X, PI) 
dt 

subject to boundary conditions: 

and 
A 

H(t x k ,P1) 0 1’ 1’ 1 

If a solution to this, generally nonlinear, two-point boundary vaiue 

problem is found, then u,(t) -I* = k(t ,x(t) ,P(t))  , [ t o J t l ] .  

2 . 2 . 2  Sucessive Approximation Techniques 

Approximation in  Co-state Space 

With suitable assurance for uniqueness and existence of a 

solution, the equations jus t  presented may be solved by numerical 

iteration techniques The solution (x(’ ) , P(* )) , such that the right- 

end boundary conditions a r e  satisfied , depends on finding the correct  

value for P(t ) *  This can be approximated by an appropriate iteration 

method. 

values /(xoJ P (t  ))I , so  that tabular functions relating the behavior 

of the right-end constraint expressions to  P(t ) can be obtained. 

functional approximation is then made to  these tabular functions and 

0 
The idea here is to intekrate f rom a set of t r ia l  initial 

(CY) 0 
A 

0 
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a value for P(t ) is solved for  which yields the apparent solution fo r  

P(t ) on th is  approximate surface.  

repeated for a set of perturbations about this apparent solution. 

Thus, the method would utilize an iteration procedure such as 

Newton’s method, Secant-methods, o r  Muller’s method. 

0 
The ent i re  procedure is then 

0 

The difficulty with this method is that the co-state equations 

are  generally unstable for  the forward-integration s teps  involved. 

Thus, the solution will be very sensitive to smal l  changes in P(t ) 

and numerical integration e r r o r s  may hamper convergence. 
0 

Approximation in Control Space 

This method involves a sequence of trial control functions 

< p  ( t )  > which a r e  successively generated by the following 
9 , l O  CY 

technique, 

Given a t r ia l  function u (t) ,  the state equations a r e  integrated 
CY 

forward from (t x ) to yield the s ta te- t ra jectory x (t). Using 
0’ 0 CY 

(x  u ) the l inear co-state equations are integrated backward from 
I f f ’  ff \ 

(tl, P(tl)) , so that the co-state t ra jectory P (t) is obtained. Then 

using the minimum principle we generate u 
CY 

(t) by C Y + l  

The process is repeated until the sequence < H t, x (t), u 

converges to a function which has an acceptably smal l  deviation f rom 

zero over [t , t l ] .  Why this method works at all and what constitutes 

an acceptably small  deviation function will be the subject of Chapter 

5, Suboptimal Control Sequences. 

(t),  $ ( t ) )  > 
( C Y  CYS1 CY 

0 

There is one difficulty associated with the method as outlined. 

We have no assurance that the trial control functions lead to the target  



11 1 2  13  originally to Courant and applied by Kelly, Ostrovskii, and 

set ,  nor do we necessarily know the value P( t  ) to u s e  in the back- 

ward integration of the co-state equations. In the case of a fixed- 

t ime , f ree  right-end problem, however , this difficulty vanishes , 

since S = {t,} x 

1 

n 
and P(t,) = 0 by transversality. 

Since in actual practice we do 

the initial state nor perfect execution 

the attainment of a precise target s e t  

optimal solution to the f r ee  right-end 

not expect perfect knowledge of 

of a desired control function, 

may be relaxed. Thus, an 

problem wherein the perfor- 

mance functional is augmented by a final value loss with respect to a 

target se t  St , for fixed final time t , would normally be close 

enough for practical purposes. 

to a single final time, then optimal solutions over an appropriate 

range of final times must be found so that the optimal final time may 

be selected. 

1 1 
If the target set  S is not restricted 

This is the so-called Denaltv function method due 

1 4  Okamura to control problems. The latter has provided proofs that 

the modified problem converges to the original problem a s  one 

assigns greater weights to the added final value loss. 

2 . 3  BELLMAN'S METHOD OF SOLUTION 

Bellman's method , based on his dynamic programming con- 

cepts , 15' 16' 'is aimed at the derivation of optimal control laws which 

generate optimum coctrol functions a s  a function of the instantaneous 

phase (t ,x).  A s  one might expect of a method which solves an entire 

c lass  of problems [i. e. , for  a l l  permissible initial phases] at once, 

certain conditions must hold. 

Basic Assumptions 

1. Attention is restricted to an open, connected subset 

G c G for which an optimum control law 6:, exists. 
0 
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2 .  The optimum performance function J(t, X; 6.,.), 1. (tJ X )  €GO# 

has continuous partial derivatives with respect to 

time and state components, i .e .  , J(t ,x;  6:,) is 

everywhere differentiable in G . 
0 

16 2 , 3 . 1  Necessary Conditions fo r  Optimality 

Theorem 3 (Bellman) 

In order  that a feasible control law 6,  defined on G be 
0, 

optimal, its performance function J = J(t, x; 6) must sa t i s fy  the 

following condition a 

a t  
a J  inf [ L(t ,x ,u)  + - f(t ,x,u) + = 0 for all (t,x)eGO ax 

U€U 

and 

J(t,x; 6 )  = 0 fo r  (t, X)ES 

(End of Assertion) 

Remarks 

Kalman' and Bridgeland 8 J  ' have provided theorems 

wherein the above conditions also become sufficient if further con- 

ditions a re  hypothesized. However, these amount to existence and 

uniqueness arguments for the optimal control law. 

pursue this mat ter  since it would take us far f rom our objectives. 

We shall  not 

The conditions of the theorem may be expressed as 

1 f(t, x,u) + L(t, x ,u)  = 0 ( 2 . 3 )  

with boundary condition J(t,x;6) = 0 fo r  (t,x)ES. 

conditions which one must satisfy: 

This leads to two 
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1 .  

2. 

6,- = k ( t J X ,  - :) , where k minimizes 

- f(t, x, k) + L(t, x, k) for all (t, x) E G . ax 0 

The optimal performance function J.,,= J(t, x; 6,) must 

satisfy the partial differential equation 

-r 

aJ., 'r 

*r 'P 

aJ., 
- +  aJ  at .L ' P  -. ax f ( J x J k ~ J x J  2) + L ( t , x ,k  ( t J X ,  - 2)) 0 

with J.,. = 0 on S. 
I,. 

If the (generally nonlinear) partial  differential equation can be 

solved, then condition 1 defines the optimal control law.  

One method of solution would consist of finding J.,, in t e rms  of 
-1- 

a polynomial s e r i e s  in (t ,x).  

purely numerical approach and solve (2.  3) over a numerical grid in 

Alternatively, we may resor t  to a 

15 
G using Bellman's flooding procedure. Finally, there is a method 

0 

of successive approximations which is described in the next section. 

2 .  3. 2 Method of Successive Approximation 

In this method we generate a sequence < 6 > of control laws 
CY 

using the following algorithm. 

1. Given a feasible control law 6 we solve the linear 
CY 

partial differential equation 

CY 
a J  

cy 
a J  
- - t -  f(t ,x,  6 ) t L(t ,x,  6 ) = 0 at ax CY cy 

with J = 0 on S. J will actually be 6 ' s  performance 

function. 
CY CY CY 

Thus it can also be found by direct calculations 

on 

J(t 0 0  x ;6 CY ) = f' L(t,x,d@) dt, 

0 



where dx/dt = f ( t ,  x, 6 ), and (to, xo) is allowed to 

range over G . 
CY 

0 

2. Having JCY(t, x) we generate b C Y + l  by 

3. We terminate the sequence when 

which is always nonpositive , is sufficiently close to zero 

over G . 
0 

(End of Algorithm) 

This method, called approximation in policy space 
16 

was f i r s t  

suggested by Bellman who also showed that the sequence < J > 
was monotone decreasing, and hence convergent for performance 

functions J which a r e  bounded from below. Recently, Leake and 

Liu'' provided convergence theorems with sufficient mathematical 

rigor. 

CY 

Again the important question is one concerned with termination 

of the algorithm. What constitutes a residual function which is 

sufficiently close to zero?  We shall consider this cri terion in 

Chapter 5. 



CHAPTER 3 

SUBOPTIMAL CONTROL THEORY 

3.1 THE REGRET FUNCTION 

Given an initial phase 8 = (t ,x ) and two feasible control 

functions u and u the relative performance loss of u with r e -  

spect to u 

0 0 0  

1 2 1 
is defined as 2 

(3.1) 

The performance of a feasible control u relative to the optimal con- 

t ro l  u* is of interest .  

function fo r  u 

For this purpose we define the regret  

Assuming the optimal control ug exists, Equation (3.2)  becomes 

R(e ; u )  = J(e 0 ; u )  - J(eO;u:$) 
0 

Let us now consider the fact that the methods of Pontryagin 

and Bellman yield control procedures 6 which are uniformly opti- 

mal with respect to initial phases. That is , for every phase e=(t, x) 

in a se t  G of feasible phases their procedure yields J,(8) = inf J(8;u). 
0 

U d L t  

With respect to these uniformly optimal procedures we say 

that a procedure 6 is €-optimal for 8 E G i f  its control 

function u for  the initial phase 8 yields: 
0 0 

6 0 

(3.3) 

25 
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We say  that the procedure d is (uniformly) E -optimal i f  

Finally, if we have a probability measure p (8 ) defined on G 0’ we 

say that a procedure 6 is 
0 

E-Bayes with respect to p i f  

I 3 . 2  INTEGRAL REPRESENTATION OF THE REGRET FUNCTION 

In order  to create a structure which allows us  to relate to 

the (indirect) variational methods of Pontryagin and Bellman we must 

seek an integral representation of the regret  function R (8 ) . 
Theorem 4 below wil l  be key in all our further developments. 

Thus 
d o  

Theorem 4 

Let J*(t,x) be continuously differentiable on an open, con- 

and let % n S be nonempty. nected subset G c G 

d have a control u 

trajectory (t, x(t)) eG1 terminating at ( t  1’ xl)e S. Then the regret  for  

8 has the form 

Let the procedure 
1 0 1 

for 8 = (t , x ) eG1 which produces the feasible 
6 0 0 0  

0 + 

Proof 

By definition , 

0 
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Since J ( t J x )  is continuously differentiable in G 

absolutely continuous over [t 

an indefinite integral 

J,(t,x(t)) is * 1’ .r 

. Thus, it may be represented as 
0, 51 

t 

J,(~J x(t)) = J,(to, -r xo) -k 1 i*(tJ x(t)) dt 

0 

where j,(tJx(t)) E ~ ~ [ t ~ , t ]  for  all  tr[ to,t l] .  

In fact, we have 

Noting that on the target set a l l  performance measures a r e  equal to 

zero, we obtain J (t ,x ) = 0, and the result  of our theorem follows 

easily . 
a 1  1 

Remark 

The theorem has been proved only for  a subset G [of the se t  
1 

G of feasible phases] over which J,(6) is continuously differentiable. 

If J,(6) is only piecewise continuously differentiable over G then 
-0. 0, 

we need further conditions in  order  for the representation to hold. 

However, fo r  problems consistent with Bellman’s assumptions , we 

have G1= Go, and we may state the following corollary to Theorem 4. 

c) 
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Corollary 1 

Let 0 be a nonempty class  of feasible control laws 6 
0 

defined over a s e t  G of feasible phases such that J.,(e) = inf J(8; 6 )  
1. oo 0 

is continuously differentiable on G [ an optimal control law &,E -6- 0, 
need not exist]. A feasible control law d E 0 is E -optimal for 

8 EG if:  

0 

0 

0 0  

fo r  the pair ( x ( * ) ,  u ( * ) )  which 6 generates commencing with 8 . It 
6 0 

is €-optimal if  this property holds for all 8 EG . 
0 0  

Remark 

We may state another corollary dealing with properties of the 

optimum control law itself. 

conditions given in Theorem 3. 

This is an alternate form of Bellman's 

Corollary 2 [Alternate form of Bellman's conditions] 

In order that a feasible control law d be optimal, i ts  

performance function J( t  , x) , presumably differentiable on (t , x) E G 

must satisfy 
O J  

almost everywhere [ t  t ] for every feasible trajectory (tJ x(t)) 

generated by 6.  
0' 1 

Proof 

If 6 is optimal, then it is E -optimal f o r  every E > 0. Thus 

for any 8 EG 
0 0  
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No admissible variation of u 

zero since the regret  function is always non-negative. 

can cause the integral to be less  than 
6 

Thus 

a. e. [t t ] f o r  every trajectory t, x(t) of 6. Finally, if 6 is opti- 

mal, then its performance function J ( t ,x )  must equal J,(t,x) every- 

where on G 0’ ‘P 

last equation. 

1- 

oJ 1 0 
and hence we may substitute J(t, x) for  J,(t, x) in our 

(End of Proof) 

Corollary 2 is a more precise statement of Bellman’s 

necessity condition (Theorem 3), and it brings the alternate formu- 

lations of Pontryagin and Sellmar, into a somewhat closer relation. 

3 . 3  INTEGRAL REPRESENTATION OF REGRET FOR A 
SPECIFIC CLASS OF CONTROL LAWS 

The representation derived in the previous section is 

restricted to optimum performance functions JJt, x) which a r e  con- 

tinuously differentiable in a set G (c G ) having limit points on S. 

Optimum control laws which are  continuously differentiable on such a 

set  will have J.,,’s with this property [see Appendix A].  

there  is a large class  of problems in which J,,,(t, x) is non- 

differentiable along a locus of phases through which we may wish to 

pass  a feasible, suboptimal trajectory. Pontryagin et  al. , have 

given several  examples of t ime -optimal problems where the optimum 

control law is discontinuous in G 

switching boundaries. 

-,* 

1 0 

However, 
‘P 

‘1. 

2 

along certain hypersurfaces o r  

In these examples , J,,(t, x) turned out to  be 
0 



continuous but non-differentiable on such boundaries. 

these boundaries were shaped in such a manner that a choice of an 

appropriate region G 

to obtain an integral representation of the regret  function for  laws 

which a r e  not limited to points at which J.,* is continuously 

differentiable 

In many cases  

would be severely restricted.  Thus , we wish 1 

,I. 

It w i l l  turn out that the integral representation will still hold 

under certain conditions, and that, i f  the trajectory ( a ,  x( . ) )  moves 

along a locus where J,, is non-differentiable, the co-state variables 

can be used in place of the partials. 

for J,k's which correspond to optimal controls of a certain c lass .  

,P 

We shall  derive these results 

3. 3.1 The Class  of Control Laws, P I G o ]  

A control law 6 is said to be of c lass  P on a domain G of 

feasible phases (or briefly, of c lass  P [ G  I ) ,  i f  it has the following 

properties : 

0 

0 

It is feasible, i. e . ,  produces feasible trajectories con- 

tained in G and generates admissible control functions. 
0 

G 2 , .  * ,  GK} of G 
1' 0 

There exists a finite partition {G 

into regions such that 
K - _  

(i) Go= U G G n G = 4 ; G k =  connected set. 
k '  k a k = l  

(ii) 6( t ,  x) is continuously differentiable on each such 

region 

(iii) The boundary between any two regions is of the form 

b(t, x) = 0, where b(t, x) is continuously differentiable 

at its solution points in G - S. 

(iv) The boundary points in G - S will form a collection of 

connected se t s  after what has been said. 

0 

0 

Each such 



3 1  

connected se t  must belong entirely to one region 

o r  another. 

Example 13 

F o r  the simple time-optimal problem 

dt = [ ;  ;Ix + [ ; I u  
where 9 

u = sca la r  control from U = [-1,1] 

The optimum control lawL is 

1 if ( t ,x)  cG1 

-1 if  ( t , x )  EG I -1 
a( t ,x)  = 

in which 

G ~ =  ( t , x ) j x 2 + q s 0  f o r  x 1: 0, orx ,+J- i - ; ; ,<  ~ f o r x  5 0  I 1 L 1 

This partition satisfies our requirements. The boundary is given 

by 

b(t ,x) = x2 + sgn x = 0 
1 

which is continuously differentiable at all  solution points except a t  

the target state (0 ,O) .  

x > 0 and one for  x 1 1 

(End of Example) 

The two branches of the boundary [one for 

< 01 satisfy condition (iv). 

We now give an assertion which will clarify the basis for a 

lemma to follow. 



Assertion 1 

F o r  the control problem of Section 2 .0 ,  let G 

connected set of feasible phases and 6 be a control law of c lass  

PIGo].  Let x(t; t , x ) be a trajectory solution start ing from the 

initial phase (t Then 

x(t; t , x ) is continuously differentiable with respect to (to, xo). 

be an open, 
0 

0 0  

x ) in the interior of one of the regions. 
0 ,  0 

0 0  

Just  if i c a t ion 

Even though the governing differential equation 

dx A 
- dt = g(t ,x) = f(t,x, 6 ( t , X ) )  

may have discontinuous right-hand sides , we nonetheless have a suc- 

cession of regions G along the given trajectory,  within which g(t ,x) 

is continuously differentiable. 
k’ 

Since the boundaries between the 

regions have differentiable forms,  then the phase (t x at which the P’ P 
trajectory f i rs t  meets a boundary will be continuously differentiable 

with respect to the initial phase (t But the function g(t, x) will 
0’ 

be continuously differentiable with respect to boundary phases for  the 

next region, and hence motion within this next region will be differen- 

tiable with respect to ( t o J x o ) ~  

we can infer continuous differentiability throughout the entire motion 

xo). 

Thus, by a chain-rule of derivatives 

in G - S. 
0 

For  details of this reasoning, the reader  is referred to 
20 problem 6, pp. 39-40, of Coddington and Levinson. 

(End of Justification) 



33 

Assertion 2 

Under the same conditions of Assertion 1, the performance 

function J(to, xo; 6)  is continuously differentiable with respect to 

initial phases (t x ) in the interior of one of the regions. 
0' 0 

Justification 

The reader  is referred to Appendix A for  an explicit 

demonstration of the conclusion. However, one can readily appreciate 

that if the conclusion of Assertion 1 holds, then it should hold for  

the system of differential equations with 

dJ dt = L (t ,x,  6 ( t , X ) )  

adjoined to it. 

(End of Justification) 

We are now in a position to give the following lemma. 

Lemma 1 

Let 6,(t, x) be an optimum control law belonging to P[ G 1. 
Suppose 6(t,x) is a feasible control law which causes the trajectory 

which it produces to move along one of 6;s switching boundaries only 

if  it moves optimally. 

0 

Then the regret function for 6 has the form 

a t  
J where 

= union of t ime intervals  of positive measure during 
which x(t) moves along a switching boundary of 6,. 

w *  
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Proof 

The proof of Theorem 4 was based on the fact that J,(t,x) 

was continuously differentiable and hence J, t, x(t) was absolutely 

. The same idea applies here as to  its absolute continuous on [t 

continuity except for  some modifications. We consider two types of 

subarcs of x ( o ) ~  those which lie entirely within the interior of some 

region G 

interval of time. 

0,  5 1  

of 6,, and those which pass along a boundary for  a positive k 

Let us consider [t  t 3 partitioned into consecutive open 
0 ,  1 

intervals ( (7  T ~ ~ ~ ) ;  i = O ,  1 , 2, . . . , I } such that x(* ) is either entirely 

within some region G 

Then , 

i’ 
o r  passing along a switching boundary of 6,. k 

where 

F o r  an interval (7 7 

k’ 

) corresponding to passage of x( . )  i’ i t1 
we have a s  before through a region G 

Otherwise, we have 

‘i+ 1 
= - 1 L(tJ  x(t), U6(t))dt, 

7. 
1 



I ' . '  

since along the boundaries (x( ) , us( 0 )) must coincide with some 

optimal pair  (x*(o ) , u*(* ) )by hypothesis. 

Thus , 

+ 1 L(t ,x ,u  )dt 
6 

O *  

where w *  is the set defined in the lemma. 

Since, J (t ,x ) = 0 and, by definition, a 1  1 

the desired result is readily obtained. 

(End of Proof) 

This result may be applied to some of the two-dimensional 
2 

processes pointed out by Pontryagin et a l . ,  

coincide with optimal trajectories. 

boundaries , motion must therefore be optimal. 

in which the boundaries 

In order  to move along these 

3. 3. 2 Integral Representation in Terms of Co-state Variables 

Control procedures based on Pontryagin's method a r e  control 

laws in the following sense. 

solved for all initial phases (to, x ) E Go. 

co-state vector P(t  ) is available fo r  each initial phase in G e 
0 0 

Naturally it will  depend on the initial phase, so we shall denote it by 

P(toJxo).  Thus, the optimum control vector u*(t ) at the phase 

(to, x ) would be one which minimizes L(t 

Suppose the optimum control problem is 

Then the initial value of the 
0 

0 

x u) + P(toJ xo) f(to, xo, u), 0 0) 0, 
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in accordance with the minimum principle. 

would then have the form 

The optimum control law 

6 >k (t ,  x) = Q. (t, x, P ( ~ J  x)) 

for every (t, X)E G . 
0 

We shall now give a lemma, whose proof is given in 

Appendix B, and finally a theorem for integral representation in 

t e rms  of co-state variables. 

Lemma 2 

F o r  optimum control laws of c lass  P [G 1, 
0 

aJ,: 
P ( t ,x )=  -- ( t ,x )  

0 at 

wherever J,(t, x) is continuously differentiable , and wherever 

aJ,/ax (t ,x(t))  and aJ,/at (t, x(t)) a r e  absolutely continuous over a 

t ime interval containing t. 

(End of Statement) 

This result deserves some comment even though it is not 

itself an end objective of this work. It has been shown by 
2 17 

Pontryagin, Kalman, Rozonoer, 21 and others , ” 22 that whenever 

J,(t,x) is twice differentiable in G 

everywhere equated to the partials of J,. 

further. 

to equate the two se ts  of variables at given points in G 

words only local conditions need be satisfied, and these conditions do 

not involve second partials for J,. 

arising from optimal controls in the c lass  P[G 1. 

the co-state variables may be 
0’ 

Lemma 2 goes a little 

J, need not be twice differentiable throughout G in order  
0 
In other 

0’ 

Naturally this holds only f o r  J$ 

However, this class 
0 
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is a rather  broad one, encompassing the majority of optimal control 

laws which a r e  synthesized in practice. 

Theorem 5 
~ ~~ 

Let the optimal control law 6 +  be of c lass  P[G ] and 
-I- 0 

(p(t,x), po(t, x)) be the optimum co-state variables for initial phases 

(t,  X)E Go' 

x ( * )  to move along one of 6;s switching boundaries only if  it moves 

optimally, has the following regret  function: 

Then a feasible control law 6 ,  which permits its trajectory 

+ 

Proof 

By Lemma 1 and Lemma 2 

R (t x ) = 6 0' 0 

For  any t ime interval w 

hypothesis. 

comprising w*, motion is optimal by i 
Over this interval, the integrand becomes 

2 
almost everywhere on w i, according to Pontryagin's principle. 

Hence 
P 

[ L tPf + Po]dt = 0. J *  
W 

(End of Proof) 
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3.4 SUFFICIENT CONDITIONS FOR E-OPTIMALITY 

The following theorem summarizes  the results.  It is felt  

that far more general results apply. 

be rather  elusive. 

However, they have proven to 

A summary of conjectures is given in Chapter 6.  

Theorem 6 

Let J,(t,x) correspond to a procedure 6, which can be 

represented as a control law in P[G 1. 
control function u 

a feasible trajectory ( *  a x( ' ) )  such that J, is a. e .  continuously 

differentiable along it.  Then 6 is E-optimal for  (t x ) if: 

Let the procedure 6 have a 

for the initial phase (to,xo) E Go which produces 
0 

6 

o a  0 

1 aJ, aJ, 
( t ,x )  f ( t ,x ,u6)  + -(t,x) a t  d t  5 E 

0 
(time arguments omitted for  simplicity) 

Furthermore,  i f  the partials aJ,/ax (t,x(t)) and aJ,/at ( t ,  x(t)) a r e  

absolutely continuous on [t 

P(t, x) and P (t, x) may be used in place of the partials. 

jectory moves optimally through phases where J, *a- is non- 

differentiable, then the above condition still applies in t e rms  of 

co-state variables. 

t 1, Pontryagin's co-state variables 
0' 1 

If the t r a -  
0 

(End of Statement) 

The next two chapters wi l l  deal with the application of these 

results to two different types of problems: 

. . Approximations to known optimal controls 

Termination conditions for successive approximations 
to unknown optimal solutions. 



CHAPTER 4 

APPROXIMATIONS TO LINEAR OPTIMAL CONTROLS 

4 . 0  UTILIZATION OF THE REGRET CRITERION 

The cr i ter ia  of Corollary 1 and Theorem 6 involve the 

optimum performance function J*(t,x), and hence could not be used 

directly for  design purposes if J, were unavailable, 

of the cr i ter ia ,  however, would be in rational approximation of 

known optimal control laws. 

solution to  an optimal control problem is not mechanized by designers, 

because its sophistication may present some problems of implementa- 

tion. 

One application 

It often happens that a known general 

The cr i ter ia  provided may be useful in these situations. 

Approximations to l inear  time-varying control laws a r e  

considered in this chapter. 

4.1 APPROXIMATION CRITERION FOR A CLASS OF PROBLEMS 

Let the process f be given by 

n 
where x r m n ,  u r U  =wJ and g: m xmn+ . Let the performance 

functional have the form 

(4.2) 
T J(t , X  ; U )  = 1 (q(t,x) + a ( t J x )  U + U N(t)uJdt  

0 
t 0 0  

where q,J  , and N a r e  ( l x l ) ,  (lxr), and ( r x r )  matr ices ,  respectively. 

In the following it is assumed that 6 ,  exists in P[G ] so that 
0 

J, has properties which enable the representations of Corollary 1 

and Theorem 6.  

39 
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Theorem 7 [Fixed Time, Quadratic Control Cost] 

Let 6,(t,x) be the optimum control law for  the above 

problem for fixed t ime t l  and N(t) a positive definite (symmetric) 

( rx r )  matrix for  each t e[to,tl]. 

i ts  trajectory t ,x(t)  a r e  E -optimal for  (t x ) if: 

Then a feasible control law 6 and 

0' 0 

2 
(t 1 S, II 6 ( tax( t )  j - 6 ,  (t, x(t)) i i N  dt 5 E 

0 

2 A T  [Note: 

respectively. ] 

II blip - b Pb, where b, P a r e  ( q x  l), ( q x q )  mat r ices  

Proof 

From Theorem 6 we have 

0 f(t ,x,  a )  + - aJ*]d t  at 5 E  
ax 

0 

By adding and subtracting L(t, x, 6 , )  and f ( t ,  x, a,) we can arrange the 

following: 

a J, 
ax 

+ - f(t, 

aJ* 
L(t, x, a )  - u t ,  x, 6 , )  + ax t 0 I 

[ f(t, x, 6 )  - f(t ,x,  6 , ) ]  dt E I 
Since 6, is optimal and of class P[G 1, the integrand of the first 

integral  is zero along ( t ,x ( t ) )  wherever aJ,/ax and aJ,/at a r e  

defined [see Corollary 2 and the remarks  of Appendix B]. Since they 

exist a.e. [t t ] the f i r s t  integral is zero,  

0 

0. 1 

Substituting the definitions of L and f f rom Equations (4.1) 

and (4 .2)  into the remaining integral we obtain: 
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Since 6 ,  is optimal we also have 

f(t, x, u) + - 
au ax at  

o r  

,I?(t,x) + 26, T N t - aJ, B = O  ax 

Substituting - B from this expression, we readily obtain ax 

1 SL1(hTN6 - 6, T N6, - 26,N(6-6,,) T dt 5 E a 
1- 

0 

and the result follows easily. 

(End of Proof) 

Remark 

The criterion involves only the trajectory ( t ,  x(t)) produced 

by 6. Thus, it involves the control function 6 t ,  x(t) and the time 

function 6, (t, x(t)) . The latter should not be confused with 

6,(t, x,(t)) = u,(t) which is the optimum control function from the 

initial phase (t xo). 

0 

0’ 

4.2 APPLICATION TO LINEAR TIME-VARYING CONTROLS 

In the event that the process equations take the form 

dx - = A(t)x + B(t)u 
dt (4.3) 

and the performance functional is of the form 
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J(t , x  ; u )  = [xTQ(t)x + 2x T L(t)u + u T N(t)u]dt 

0 
t 0 0  

9 ,17 ,  22  i t  is known that 6 ,  has the form: 

in which M(t) satisfies the matrix Riccati differential equation 

-1 T -1 T -1 T T  T - -  dM - - (Q-LN L ) - M(A-BN L ) -(A-BN L ) M 
dt 

-1 T T 
+MBN B M 

(4.4) 

( 4 . 5 )  

(4 .6 )  

with boundary condition M(t ) = 0. 

symmetric,  M may also be regarded as symmetric.  

Since Q and N may be taken as 1 

With the control law of ( 4 . 5 )  the optimum performance 

function assumes the form 

T 
J,(t,x) = x M(t)x (4.7) 

Instead of determining M(t) from (4.6) one may regard M(t )  

a s  the transformation matrix between the state and co-state vectors.  

(4.8) 

This relation may be obtained by a process which involves the 

solution of the system of 2n f i rs t -order  differential equations 

(4 .9)  

-1 T A-BN L , -BN-'B 

-1 T T -1 T - Q + L N  L , -A + L N  B 
dt 

where z is the combined state - co-state vector 
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(4.10) 

subject to boundary conditions of Pontryaginls formulation. 

-1 In any case,  Equation ( 4 . 5 )  shows that, aside from N (t) 

which is subject to the designer's definition, the feedback gain matr ix  

may require approximation due to its general dependence on time. 

How should this be done without sacrificing proximity to optimality ? 

SubODtimum Desirms 

Suppose we choose to use a suboptimum form 

6(t,x) = -N-'(t) K(t)x (4.11) 

T 
where K(t) is an ( r x n )  matrix serving to approximate B (t)M(t) + 
L (t). Then by Theorem 7 T 

A 

For specific problems we may wish to  proceed in different 

ways from this juncture. 

ExamDle 14 

Suppose that B(t) and L(t) a r e  constant matr ices  o r  else 

simple enough in form s o  that in Equations (4.11) and ( 4 . 1 2 )  we 

choose the approximating form 

K(t) = BT(t)  G(t) t LT(t) 
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Then for E -0ptimality we require 

t. 

If we define the (weighted) norm of any ( n x m )  matrix A with respect 

to the ( n x n )  weight matrix W by 

T 11 A 1 1 2  9 t race [ A  WA] 
W 

then we obtain the inequality 

Thus a sufficient condition for E‘-optimality is 
+ 

t 0 1  s t 3  

This criterion may be used to approximate M(t) i f  it is 

Alternatively, i f  M(t) were to be mechanized but must be known. 

found by numerical integration of (4. 6 ) ,  then this cri terion could be 

used to determine the tolerable e r r o r  in the numerical  procedure. 

It should be painted out that in many cases  we have that 
2 2 

= 11 xoII sup 11 x(t)II 

small  proportion of J,(to,xo). That is, f rom (4. 7 )  

and that E is frequently acceptable a s  some 
t 

A T  
E = xo M(to)xo E 

P 

where E is a small  ( 0 < E << 1) proportionality constant. Then 

we would have 
P P 
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as the corresponding criterion. 

Example 1 5  (Merriam, pp. 97-99) 
9 

This example is chosen to i l lustrate some of the ideas above. 

The optimum control law turns out to be simple enough since the 

problem is rather  simple. However, it would be instructive to  s e e  

how one would approximate it. Consider the sca l a r  process 

where it is desired that y(t) be regulated wrt a reference value Y 

so  that the following is minimized 

In this last equation Y and w a r e  constants set forth by the designer. 

By defining x(t) = y(t) -Y, we see that Q = 1, N = l / w  , B = 1, 

A = 0, and L = 0 in Equations (4.3) and (4.4) with t = 0 and t = T. 

Thus, Equations (4.5) and (4.6) yield 

A 2 

0 1 

m (t)x , where 2 
6, = -w 

dm 2 2  - = -1 + w  m ( t ) ;  m(T)  = 0 dt 

The differential equation is readily integrated23 to yield 

1 
m( t )  = - tanh w(T-t) w 

Thus , 
6,(t,x) = -xu  tanh w(T-t) 
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and from (4.7) 
2 

J,(t,x) = - X tanh w(T-t) 
w 

We note that the feedback gain is time-varying even though the process  

and performance functionals were time-invariant. 

finite control interval. 

This is due to the 

Let us now consider an €-optimal law 

a(t ,x) = -xw g(t) 

where we specify E as 2 
X 

e =  E J,(o,x ) = E - 0 tanh w T 
P 0 P w  

From Theorem 7 or Equation (4 .12)  

2 x tanhwT 2 2  0 
T 1 (g(t) -tanh w(T-t))  x (t)dt 5 E P w 
0 

With the control law 6(t,x) it is easily verified that 

0 x(t) = e X 
0 

Thus, for 6-optimality we must have 
_t 

This is assured for  g(t) 2 0 if  

tanh w T T 2 1 (g(t) -tanh w(T-t)) dt 5 E 
P w  0 

With a change of variables this becomes 



wT 2 
(h(x) - tanh x )  dx 5 E tanh w t  

P 0 

where h(w(T-t)) = g(t). 

We may use  orthogonal polynomials to ca r ry  out our approxi- 

mation from this point on. 

asymptotic cases  

However, if we have either of the 

(i) U T > >  1, or 

(ii) UT << 1, 

then it is easy to see  that the following simple gains a r e  possible 

tanhxdx, i f  

2 

I:T 1 
g(t) = constant = - w T  

E x dx - (wT)g 

(i) 

P 

( w  T)6 g(t) = iinear = w(T-t), if E 2 ~ 9x 7 (ii) 
P 

Thus, over long control periods a simple constant can be 

used as a feedback gain. 

l inear time-varying gain would suffice. 

intervals a composite of the two would be appropriate. 

approximations a r e  of course, the type of approximations which a 

designer would have intuitively employed. 

cri terion, however, provides the rational basis for such ideas. 

For relatively short  control periods, a 

F o r  moderate control 

These 

The approximation 



CHAPTER 5 

SUBOPTIMAL CONTROL SEQUENCES 

5 . 0  SUCCESSIVE APPROXIMATIONS 

In this chapter we shall consider suboptimal control 

sequences generated by successive approximations. 

approximation techniques a r e  given for  both the Bellman and 

Pontryagin conditions. 

cri teria for these methods. 

Monotone 

Finally, we shall  consider termination 

The following assumptions a r e  made: 

A l .  Fixed final time, f ree  right-end problems. 
(Terminal constraints approximated by final 
value loss considerations ) 

A2.  Existence of optimal solutions. 

A3.  Unique solutions to the necessary conditions of 
Bellman and Pontryagin. 

These considerations have already been discussed in Chapter 2 

5 . 1  CONTROL LAW SEQUENCES 

The following technique is an extension of the work of Leake 
1 0  and Liu  

policy space. 

t ro l  laws to  be of class P [G ] ra ther  than requiring them to be con- 

tinuously differentiabla throughout Go. 

who carr ied through Bellman's idea of approximation in 

The extension consists of allowing the successive con- 

0 

Construction of the Sequence 

A Let 6 ( t , x )  be of c lass  P[G ] and J ( t ,x )  = J( t ,x;  be 
CY 0 CY 

i ts  corresponding performance function obtained whether by direct  

calculation or by solution of the l inear partial  differential equation 

48 
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with boundary 
n 

condition J (t ,x) = 0 (all X E ~  ) e  

a 1  

Having found J (t, x), another control law b (t, x) is 
CY C Y + l  

(5.2) 

where 

( 5 . 3 )  1 CY 
a J  

f ( t ,x ,k)  = inf L(t ,x ,u)  +- f(t,  x, 4 ax ax 
CY 

a J  
L(t ,x,k) + - 

U € U  

Since 6 E P [ G  1, a J  /ax may not be defined at points (t, x) 
CY 0 CY 

along a boundary of a region G for  6 Thus in (5 .2 )  may 

not be defined everywhere in G 

definition as follows. 

identity defined everywhere in G a 

be regarded as limits as ( t ,x)  approach the partition boundary 

G k n G Q  from either G or  Go 
k a -  

l imits exist everywhere along the boundary using interior points of 

k CY 
We may extend i ts  domain of 

We consider the statement of (5.1) as an 
0 

Hence aJ  /a t  and aJa/8x may 
0 a 

0 - 
We shall  assume that finite 

regularized so that they a r e  well defined mappings on Go. 

extension, 

Lemma 3 

With this 

is likewise defined everywhere in G %+l O 0  

The control law 6 is uniformly as good as b . Further  at1 CY 

0) xo) is better than 6 for some (t %+l CY 
i f  b is not optimal, then 

E Go' 
cy 

Proof 

Is regret  relative to  b 
%+l CY 

Consider 
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where the inequality arises from (5.2) and (5. 3). However, the 

integrand in this last integral is zero by virtue of (5.1) .  Thus, 6 C Y + l  

is uniformly as good as 

fo r  all (to, xo) E Goa  

6 since its relative regret  is nonpositive 
CY 

We prove the second half of the lemma by a contrapositive 

argument. Suppose there  were no phase (t x )EG for which strict 
0’ 0 0 

6 ) E 0 for  all (t ,xo) inequality holds above. Then R(t 0 ,x0; 6 C Y + l ’  a 
0 

This implies J E J , which in turn implies E Go CY+ 1 CY 

Thus, we have 

= L(t ,x  , 6 ) f ( t ,x  , u )  + - 
C Y C Y  at 

CY 
a J  

ax CY 
U € U  

CY 
a J  

CY f ( t ,x  , 6  ) + at 
a J  

C Y C Y  
+ -  ax 

almost everywhere along every trajectory ( t ,x  CY ( t)) produced by 6 CY . 
Since the right side of this equation is zero  by virtue of (5. l),  then 

J 

2, Chapter 3 (see the remark following the proof of Theorem A in 

Appendix B as to why Corollary 2 holds a lso fo r  optimum control 

laws of class 

satisfies the necessary condition for  optimality given in Corollary 
CY 

P[G 1). Because of assumptions (A .  2)  and (A.  3) of 
0 



Section 5.0, J and 6 must correspond to the optimal solution 
CY CY 

J, and 6,$. 

(End of Proof) 

Definition 

A control law 6 is said to be better than a control law 6' if 

its regret  function R (e) satisfies 6 

and there  is one 8 EG for  which strict inequality holds. 
0 

Theorem 8 

Suppose each successive control law 6 CY+ 1 is of c lass  

PIGo]. 
law in a finite number of steps or is monotonically better. 

Then the sequence <6 > either converges to the optimum 
CY 

Proof 

F r o m l e m m a  3 

R(8; dCutl ,  5 0 for 

and i f  6 # 6, then s t r ic t  inequality 
CY 

all e E G o  

holds for  some f3e Goo 

= J(B;6CY+l) - J ( e ; 6  ) 
CY 

Thus 

R (e)  5 R6 (e) for  all 8 E G o  
%+l CY 

and s t r ic t  inequality holds for  some 8 E G o  if dCY # 6,. 
there  is no finite CY f o r  which 6 = 6,, then < 6 > is a sequence 

of monotonically better control laws. 

Therefore, if 

CY CY 
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Remarks 

The important fact about the sequence is that i t  is mono- 

tonically better whether i t  converges o r  not. 

We have not given conditions which would guarantee that 

each successive law is of c lass  P[G 1. 
this will turn out to be the case a posteriori. 

which come immediately to mind, however, a r e  

In many practical problems 
0 

Sufficient conditions 

1. Use of control laws which a r e  piecewise 

analytic and having partition boundaries 

defined by analytic functions, and 

2. The bounded control se t  is defined by an 

analytic function on 7 ~ ' .  

These conditions a r e  perhaps much too strong for  many problems of 

interest ,  however. 

5 .2  CONTROL FUNCTION SEQUENCES 

In many instances in practice, an optimal solution for  a 

specific initial phase (t 

of initial phases. 

function u(' ) is sought over an interval [ t  , t 1 for a specific initial 

state x Whether o r  not the designer implements this solution as 

an open-loop time function U ( O )  o r  a control law 6 

U ( O  ) depends on the problem's external considerations. 

x ) is desired rather  than for an entire s e t  

In other words an optimal o r  near-optimal control 

0 1  

0,  0 

0' 
which generates 

U 

A method is given below which yields a sequence of 

monotonically better control solutions for  a given initial phase (t 

The problem of synthesis of the feedback control laws corresponding 

to these control functions is solved simultaneously, since control 

laws a r e  inherent in the method. 

xo). 0, 



Construction of the Sequence 

Let u (t) be any admissible control function for  the initial 
CY 

phase (to,xo)- F r o m  this we can obtain some control law b 

follows : 

as 
CY+l 

Consider the artifice of regarding u (t) as a control law: - CY 

The performance function J f o r  this control law is 
CY 

(5.5) 

where ( 7 ,  ~ ( 7 ) )  is the trajectory produced by u start ing from the 
CY 

initial phase (t ,x) [Note: ( t ,x) need not be - the initial phase (t 0) xo) 
of the problem]. 

is chosen so that %+l 

%+l ax 

A s  in Section 5.1 

where 

Finally u (t) is generated by integrating the process 
C Y + l  

equations from (t x ), using the control law b and setting 
0’ 0 CY+l’ 

Remark  

Since only a J  /ax is involved in the choice of 6 it is 

possible to obtain without first solving for  J either directly 

f rom (5 .  5) o r  as a solution to the partial  differential equation (5.1) .  

CY CYt-1’ 

CY 
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From (5.5) we have 

where ax (7) /ax is the fundamental matr ix  for  the process  
CY 

with initial condition x(t) = x. 

Relation ( 5 - 7 )  would be particularly useful i f  the process 

equations w e r e  linear, since the fundamental matr ix  would be in- 

dependent of x and u and a J  /ax would depend on x only through 
C Y ’  CY 

aL lax. 

Theorem 9 

Let u ( o )  be an admissible control function for (t x ) and 
0 0’ 0 

let each successive control function obtained by continuing the above 

process  be admissible. 

< u > generated by < 6 > either converges a. e. [t t ] to the 

optimal control u.,, fo r  (t , x  ) in a finite number of s teps  o r  is mono- 

Then the sequence of control functions 

CY CY 0’ 1 

-4- 0 0  
tonically 

Proof 

better for  (to,xo)’ 

Because each u is admissible, J (t, x) defined by (5.5) is 
CY CY 

seen to be continuously differentiable wrt ( t ,x)  E G 

4, Chapter 3, allows us to express the relative regre t  of 6 wrt 

6 = u (t) as 

Thus, Theorem 
0 

at1 A 
CY CY 
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But this last  integral is zero for  the same reason a s  in the proof of 

lemma 3, Section 5.1. In fact we have 

CY 
a J  

cy 
a J  

5 0, al l  (t, x) EG 
0 

f ( t , x J  ) + at 
C Y + l  

L ( t J  x, 6CY+l) + ax 
If equality holds for  the relative regret expressions above, then 

a J  
cy 

aJ 
CY 

6 ) + -  = o  at f ( t ,x  L ( t J X C Y + l ’  6CY+1) + ax Q+lJ Q+l 

a. e. along (t,  x 

But it is also t rue that 

(t)) . 
CY+ 1 

CY 
a J  

a ) +  - = o  CY 
a J  

f ( t J X C Y + l J  CY at 

everywhere along (t, x 

(t ,  x) E Go. 

(t )) since this is an identity for every 
C Y + l ’  

This implies [see remark following proof for an expansion 
A 

of this point] that 6CY+l(tJx (t)) = 6 = uCY(t) a . e .  [ toJtl] .  In other 

words x (t)  = x (t), and hence 
CY CY 

C Y + l  CY 

inf a J  cy 3JCY] f( t ,x  Ju) + - = 0 a .e .  [ t  , t l ] .  L( tJ  xCY, u) + - ax CY at 0 

CY CY 

u EU [ 
If i t  can be established that a J  /at and a J  /ax a r e  the co-state 

variables along ( t , x  (t)) , then this last  equation implies that u = u* 

a.e.  [t 
CY CY 

t 1 due our assumption of uniqueness of solution to 
0’ 1 
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Pontryagin’s necessary conditions. 

lishes the identification of the partials with co-state variables. 

Lemma A of Appendix B estab- 

We have thus shown that if the relative regret  of 6 

6 u (t) is equal a. e.  [ t  t ] to the 

wrt 
CY+l 

6 

optimal control function for  (t xo). A contrapositive argument 

(t)) is better for  ( t  x ) i f  establishes that u ( t)  = ( t , ~ ~ + ~  0, 0 

u is not optimal. Thus, our sequence < u > is monotonically 

better for (to,x ), and if for  some finite CY this is not so,  then the 

sequence has converged a . e .  [ t  t ] to u*. 

(End of Proof) 

is zero for  (t  x ), then 6 CY 0’ 0 CY CY 0, 1 

0, A 
C Y + l  

CY CY 

0 

0’ 1 

Remark 

C Y + l  The crucial step in the above proof was the equating of 6 

and d both satisfy 
CY CY+l  CY+1 CY 

to 6 a .e .  along ( t ,x  (t)) because 6 

CY 
a J  a J  

CY a) + - = o  at f ( t ,x  a ) +  - L(t J XQS 1 J ax C Y + l  

almost everywhere along (t, x 

s o  then the control problem has been ill-posed. 

law 6 defined by 

(t)). It is claimed that if this is not 
CY+l 

Consider the control 

x 
dx(t,x) = A 6  ( t ,x)  -t ( 1 - A )  6 ( t ,x ) ,  0 5 x 5 1 

C Y + l  CY 

This wil l  be an admissible control law with the property 

CY 
a J  

CY 
aJ  a J  

CY f ( t ,x ,6  

f(t,x,d ) -t - 5 0  

) +-s  L(t,x,dx) +- ax a&l )  + ax CY+i at 
CY 

a J  
h a t  



almost everywhere. If 6 and 6 were different along the t r a -  

jectory over a nonzero measure of time, then a nondenumerable set 

of phases ( t ,  ~ @ + ~ ( t ) )  would exist for  which 6 

cannot be uniquely defined. This is because 6 would be equally a s  

effective in the minimization process involved in deriving the function 

k. Moreover this would be t rue for  a l l  X E[O, 11. A situation such 

as  this will  a r i s e  i f  L(t, x, u) and/or f(t, x, u) a r e  ill-defined o r  if  

one o r  more  components of the control vector have no influence on 

the process behavior. We, of course, assume that the problem has 

been posed properly so that k is well defined, except possibly on a 

se t  of phases which is at most denumerable. 

CY+l CY 

k(t, x, aJ  /ax) 
CY+ 1 CY 

X 

(End of Remark) 

A very important by-product of Theorem 9 is the fact that 

the procedure of this section allows feedback control synthesis of 

any optimal control function. 

configuration will be simpler to implement than merely storing u,,,(t) _. 

in a suitable memory unit. However this may be the case in certain 

problems. 

problems. 

It is not always t rue that the feedback 

The following corollary would be of value in such 

Corollary 3 [Synthesis of Optimal Controls] 

Let u,(t) be optimal for (t  x ), then oJ 0 

where 
t. 

is a feedback realization which is optimal for  (t xo). 0' 



5.3 TERMINATION CRITERIA 

The final theorem of this dissertation is concerned with a 

cri terion which may be used to terminate the sequences. 

criterion guarantees E -optimalitye 

This 

Theorem 10 

Let g(t,x) be a non-negative function from G into such 
0 

that J;t' g ( t ,x( t ) )dt  5 E 

0 

fo r  all feasible trajectories.  Then the sequences < 6 > of 

Theorems 8 and 9 consist of €-optimal laws for all cy 2 N if 
(Y 

"N ] -g(t ,x) 5 inf L(t ,x ,u)  + - f ( t J x J u )  ax 
U E U  

for  all  ( t ,x) E G o o  

Proof 

Since for all (t, x) E G 
0 

f ( t ,  x, u) + - 5 L(t, x, 6 , )  :,: aJN1 a t  L(t, x, u) + - aJN 
ax 

U € U  

+- aJN f( t ,  x J  '*) ax 

then 

dt 
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The integral on the left is greater  than ( -E)  by hypothesis. The 

integral on the right is the regre t  for  6, with respect  to 6 

alternatively, the negative of 6 Is regret  function R 
N 'N 0 

or ,  

(t ,xo).  Thus, 
N 

R (to,xo) 5 E for a l l  (t , x  )EG 
0 0  0 6N 

By the monotonicity of < 6 >, all successors  to 6 a r e  also 
CY N 

E -optimal. 

(End of Proof) 

The simplest choice of g for  uniform E-optimality is 

However, if the designer has some rough idea of how the optimal 

t ra jector ies  wil l  behave, then other non-trivial choices for  g may 

be appropriate for  reducing the number of i terations.  

If L(t, x, u)  is non-negative fo r  all  (t,  X ) E  G and UEU, and 
0 

it is desired that 

where E and 

selected a s  
0 

E a r e  smal l  positive constants, then g can be 
P 

E 
0 

g(t ,x) = - + E inf L( t ,x ,u)  
U E U  

t -t 1 0  

This follows directly from the fact that 

(5.8) 

(5.9) 



CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE STUDIES 

6 . 0  CONCLUSIONS 

The major  contribution of this dissertation is the introduction 

of the regret function and i ts  integral representation based on 

Weierstrass ideas. 2 6 J 2 7  The most direct application of this repre-  

sentation is the rational approximation of known optimal control 

policies. 

optimal controls (Theorem 7 ) .  

This was illustrated in Chapter 4 for  linear, time-varying 

In Chapter 5 we utilized the ideas of Chapter 3 to solve the 

problem of suboptimal designs when optimal solutions to fixed t ime , 
f ree  right end problems were not known a priori ,  a s  in the case of 

Chapter 4. Two methods of successive approximations were given, 

corresponding to the control function and control law approaches of 

Pontryagin and Bellman, respectively. Theorem 8 represents an 

extension of the work of Leake and Liu for continuously differentiable 

control laws The extension to piecewise continuously differentiable 

laws is considered significant, since problems with bounded control 

se t s  a r e  likely to result in laws of class P [G 1. 
for control functions (Section 5. 2)  is new insofar a s  this investigator 

knows. 

also new. 

The iterative method 
0 

The feedback synthesis given in Corollary 3 is apparently 

Finally, the termination cri terion given in Theorem 10 is felt  

to be an important contribution to the design of €-optimal controls. 

We may summarize this in t e rms  of the following corollary to 

Theorem 10. 

Corollary 4 [Fixed time, f ree  right end problem] 

Let g (t ,x) be a non-negative function defined on Go such that 
E 
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L 
0 

for  all  feasible trajectories (t, x(t)) in G 

6 E P[G 1, with performance function J( t ,x) ,  is E-optimal if  

A feasible control law 
0 

0 

g p ,  x) 1 aJ a J  
L(t ,x ,u)  + - ( t ,x)  f ( t ,x ,u)  + - ( t ,x )  2 - ax at 

U€U 

(End of Statement) 

This condition does not involve knowledge of the optimal 

solution (6:<, JJ, although it is based very  much on properties which 

the optimal solution must have. Corollary 4, based on Theorem 10, 

is the E-optimal extension of Corollary 2, based on Theorem 4. In 

the case  of Corollary 2, the condition given is sufficient for optimality 

if an optimal solution exists and is a unique solution to the condition 

given there.  

1. 

In the case of Corollary 4, a sufficient condition for 

E-optimality is given under the same assumptions of existence arid 

uniqueness of solution to the necessary conditions f o r  optimality. 

The above corollary is useful in design problems in the 

following sense. 

usually have a control scheme in mind, which he knows wil l  work, 

and which, i f  not optimal, will be close to being so. 

reasoning leads to the conclusion that an optimal solution exists and 

is the unique extremum, then Corollary 4 allows him to verify the 

mer i t s  of his control scheme. 

employed to i terate on his initial choice, i f  its performance is felt to 

be in need of improvement. 

At the onset of a control problem the designer will  

If physical 

The methods of Chapter 5 may be 



6 . 1  RECOMMENDATIONS FOR FUTURE STUDIES 

In Chapter 3 we sought an integral representation fo r  regret  

in t e rms  of partials of the optimal performance function J,%(t,x). 

o rder  to proceed from the class  of continuously differentiable control 

laws, a class P [ G  ] of control laws was hypothesized and the optimal 

law was assumed to be in such a class.  

for  a more general c lass?  The problem here is twofold. 

regret  can be given an integral representation only if J,(t,x) is 

absolutely continuous fo r  a l l  trajectories (t, x(t)) produced by the 

feasible control i n  question. Second, even if the regret  is expressible 

as  an integral over [ t  t 1, does the integrand have the form 

In 

0 
Is the representation valid 

F i r s t ,  the 

0’ 1 

It would appear that a form such a s  this would be desirable, 

since it relates directly to the Hamiltonian conditions of Bellman and 

Pontryagin. We  have succeeded in showing that, under certain con- 

ditions, the form above holds in t e rms  of the co-state variables even 

if aJ,/ax and a J , / a t  were undefined over a positive measure of 

time along a trajectory. 

6 cause the state to move optimally if i t  moves at all, for  a positive 

measure of t ime, through s ta tes  for  which the partials a r e  undefined. 

Is this latter condition necessary? In other words, will i t  hold in 

t e rms  of co-state variables regardless of how the state moves along 

boundaries of the regions GkC G ? 

amples of Reference 2 this investigator found that in many cases  a 

feasible trajectory could not move along a boundary unless the 

boundary were a manifold of optimal trajectories.  ) 

’1. 

The conditions were that 6 , ~  P[G 3 and that 
0 

(In studying the pertinent ex- 
0 

A question which has not been settled by this dissertation, 

but whose answer has been long suspected by researchers  is the 



I .: 

following. Are the co-state variables P(t  , x  ) and P (t , x  ) limits 

of aJ,/at a s  (t,  x )+  (to, x ) in some appropriate way? 
0 0  0 0  0 

0 

Extension of the Research to  Statistical Systems 

We have not touched on the matter  of control schemes for 

statist ical  processes o r  processes which a r e  not perfectly observable. 

That is, what a r e  sufficient conditions for  

law using an estimate of the t rue  phase ( t ,x)  which is corrupted by 

observation noise? In addition, how would the solution be affected if  

the formulation also included random control execution e r r o r s  which 

depend on the control decisions? 

E-optimality of a control 

F o r  the case of linear systems with normally distributed 

observation and control e r r o r s  , optimal solutions a r e  known, These 

turn out to be rather  complex i f  the e r r o r  processes have non-trivial 

covariance matr ices  ~ 

be useful if it is appropriately extended to the statist ical  case. 

The approximation criterion of Theorem 7 may 
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1 .  ‘ .  

A P P E N D I X  A 

E X I S T E N C E  AND CONTINUITY OF P E R F O R M A N C E  P A R T I A L S  

We wish to give an explicit demonstration of Assertion 2 of 

Chapter 3 .  

Lemma 2 of the same  chapter. 

These results will then be used in Appendix B to  prove 

Let the control law 6 6  P[G ] have the solution x( t; to, xo) 

t (t 
0 

over [t 

regions . (G 1, G2,  e . , GK} of continuous differentiability. Let us 

denote the sequence of regions G which (t ,x(t ; t  ,xo)) passes  

through by < G > , where i = 1 , 2 ,  o .  , I  (finite). 

x )]  where (to,x ) is an interior point of one of 6’s 
0’ 1 0’ 0 0 

k 0 

ki 

By definition, 6 ’ s  performance for  (t x ) is given by 
0’ 0 

A For  a neighboring phase (t x ) = ( t  + h x + A) ,  where 

(A , X ) ~ l f ? x m  such that 
n X’ x 0 0’ 0 

IX I and 11 XI1 a r e  less than a smal l  
0 r O  \ 

number € , the solution (t, x(t; t X’ n 
the same sequence < G > of regions (this due essentially to con- 

dition (iv) of the definition for  PIGo]).  

x )) will  pass successively through 

ki 

To shorten the length of the expressions to follow we intro- 

duce the following notation: 
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6 8  

Thus, for  the solution 8,(t) we have 

For control laws of c lass  P[G ] the solutions x(t; 8 ) a r e  continuously 

differentiable with respect to 8 EG , where G denotes the interior 

of G . Thus, we have 

0 0 
0 0 

O k l  k l  

kl 

throughout [to, tl(Oo)], and 

whenever 8 (t) and 8 (t)  a r e  contained in a single region G . When- 

ever 8 (t) and 8 (t) a r e  in two different regions Gk and G 
then one solution or the other must have reached the boundary f i r s t  

a t  a boundary phase Let us  assume that the un- 

perturbed solution does so f i r s t .  In this case for ,  t E[t t + € ] 

h 0 ki 

%+l’ x 0 i 

e0(tB) or %(tb).  

B’ B 

and 

where subscripts (?> indicate right or left limits a s  we approach 

8 (t ) from region G or G , respectively. In the case where 

8-p) meets the boundary f i r s t ,  the same expressions will apply 
O B  ki+l ki 
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I 

except for interchanging (t), e (t 1, t ) with (ex(t)J e (tb)J t k )  O B  B 
wherever they appear. 

The demonstration can now begin with these preliminaries 

away. Let 

in which L[  8 (t) ,  6 (eo(t))] is extended as  is necessary for these 

integrals by holding it constant at L [ 8 (t  ), 6 (eo(tl))] or 

L[ eo, 

0 

0 1  
outside of [to, tl(Oo)]e 

We treat  each integral separately for convenience. 

Integral 1 

since t = t + X where X = O(E) .  X 0 0) 0 

Integral 2 



04 0 0 
0, - ( t l J  x ) ES f o r  our unperturbed solution. Of course, 1 where 

if we a r e  dealing with a fixed t ime problem, this integral is zero.  In 

the general case 

since the solutions a r e  continuously differentiable wrt initial phases 

and the boundary 8s of the target S is continuously differentiable 

wrt terminal phases [see Chapter 11. Thus, 

Integral 3 

This easily becomes 

since L(BJ u) is continuously differentiable wrt ( 0 , ~ ) .  The second 

integral on the right, call it I may be treated a s  follows: 32’ 

I 



1 .  . .  

where w is the union of a l l  time intervals over € 

dt + o(E) 

which 8 ( t )  and x 
8 (t) a r e  in two different regions G and G . Let w be any 

one of these t ime intervals. In fact, let u s  assume 8 (t) c rosses  the 

boundary first at a boundary phase 8 (t ) and 8 (t) reaches it la ter  

at eA(th) where t '  = tB t E i m  

ki ki+l 'i 0 

0 

O B  x 
Then for  this case B 

and 

deo(t) 
- (t- t  ) dt + 0 ( E i )  

dt+ B 

Thus, we have f o r  an interval w , 
'i 



7 2  

Since 8 (t) is continuous and L differentiable wrt 8, 
0 

From this example one sees  that the integral over w E  will have the 

form 

However, as in the case of Integral I, 
Ll 

Bi Bi a e  

since our boundaries a r e  assumed continuously differentiable. Thus,  

Conclusion 

Collecting al l  integrals I 12, IQ1, 132 and letting E -. 0, 

we have to first order  
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L 
0 

I 

- L(e J 6 ( e  0 1) 
0 0  

This shows that J( 6 : 6)  is differentiable for 6 E Go , and moreover 

that it is continuously so. 0 O kl 

The partials of J (0  : 6 )  are  given below. 
0 

+ 

In these last equations we have dropped all  superfluous subscripts 

since we a r e  concerned with the single trajectory: 



APPENDIX B 

IDENTIFICATION OF CO-STATE VARIABLES 
WITH PERFORMANCE PARTIALS 

Theorem A 

Let the optimal performance function J,(to x ) correspond 
0 

to a control l aw  P I G  1. Then aJ, / a t  and aJ,/axo satisfy 

the co-state equations and boundary condition [ L(to xo, 6,(to, xo)) 
0 0 

t aJ,/axo (to, xo) f x0, 6 p o J  xo)) + aJ,/ato (to, xo) = 01 of 

Pontryagin's method (Theorem 2, Chapter 2 )  if: 

aJ* a J* 
(ii) - at ( t J  x( t ) )  and - ax (t,x(t) a r e  absolutely 

continuous over some interval containing t . 
0 

Proof 

Condition (i) allows us to conclude that the performance 

function partials aJ,/at , aJ,/ax exist and are continuous in a 

neighborhood about (t xo). Condition (ii) enables us to differentiate 
O J  

with respect to time almost everywhere in this neighborhood. 

From Equation (A.  5) of Appendix A we have for ( t ,  x(t)) in 

this neighborhood, 

[Note.' F o r  simplicity we have denoted ~ * ( T , x ( T ) )  by 6 , ( ~ ) . ]  

Differentiating with respect  to t (denoting this by a dot), we have 
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7 5  

1 But since ax(E)/ax(t) is a state-transformation matrix,  we have: 

corresponding to the process equations 

dx A 
- dt = g ( t A  = f ( t , x ,  a * ( t , X ) )  

Therefore using relation (B. 1) we have 

But from relation (B. 2)  

Sub s t  itut ing this we obtain, 



Our next s tep is the crucial  one. The expression in square 

brackets is equal to 

1 

1 aJ* aJ, 
L(t ,x,u) + - (t ,x) f(t ,x,  u) + - (t ,x) au  ax a t  

evaluated at (t, x(t), 6,(t, x(t))) . This quantity multiplied by the matr ix  

a6,(t,x)/ax (t,x(t)) is indicative of the variation that one might 

obtain in [L + aJ,/ax f + aJ,/at ] by using values of u equal to 

6,(t,y), where y is a state vector drawn from a smal l  neighborhood 

N(x(t)) about x(t). Two things are possible; 

(i) 6,(t,x(t)) is on a boundary of the (closed) control 

set U, o r  

(ii) 6*(t,x(t)) is an interior point of U. 

If (ii) occurs then expression (B. 3) must be a null vector (at least for 

almost every t in a neighborhood of t ), since 6,(t, x, (t)) is optimal 

and minimizes L + aJ,/ax f + aJ,/at [ see  Corollary 2, Chapter 31. 
0 

If (i) occurs and the closure the image of 

N(x(t)) has 6,(t,x(t)) as an interior point, then the product of ex- 

pression (B. 3) with a6,/ax must be null fo r  the same  reason as 

above. The remaining possiblity is that 6*(t, x(t)) is a boundary point 

of U and an extreme point of . In this case,  since 6, 

is continuously differentiable, we must have ad,/ax as a null matrix 

at (t,  x(t)) 
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Thus , we obtain 

almost everywhere in a neighborhood of t . 
0 

Let us now t rea t  aJ,/at . From Equation (A .  4) of Appendix 

A,  
+ 

- [ t J x ( t ) J  6 & ( t J x ( t ) ) ]  T a 

We note that the only difference from what we had for  aJ,/ax t,  x(t) 

is that we have an additional t e r m  (-L), and that we shall  be concerned 

with partials 

0 

Using the following relation, 

and recalling (B. 2), (B. 4), as well as previous devices, we may 

derive 

almost everywhere in a neighborhood of t . Thus, aJ, /at  and 

aJ,/ax satisfy the co-state equations of Theorem 2, Chapter 2. 
0 



The remaining s tep is to  show that they sat isfy the boundary 

condition 

= o  aJ* 
L(toJ xol + ax aJ* f ( t o J x o J  6*(to)) ' at 

This follows from Corollary 2, Chapter 3, which states that this must  

hold a. e. along an optimal trajectory (where the partials exist and 

are continuous). In particular, since al l  quantities involved in the 

boundary condition above a r e  defined and continuous everywhere in a 

neighborhood of t the condition actually holds everywhere in the 
0, 

neighborhood e 

(End of Proof) 

Remark 

The allusion to Corollary 2 in this proof deserves  some 

expansion. Corollary 2 is based on the assumption that J,(t,x) is 

continuously differentiable in a region G 

boundary points in common with the boundary of S. 

situation we are dealing with a region Gk 

from S. 

the problem in which the boundary aG 

since each subarc of an optimal trajectory is optimal for  its endpoints. 

containing S o r  having 
0 

In the present 

which in general is remote 
1 

We are alluding to the fact that 6, must also be optimal for  

is considered as a target,  
kl 

Thus, for this sub-problem 

L 
0 

- -  
where (t x ) $  corresponding to  an initial ( t ,x) is the phase produced 

by 6, at time t- = 

optimal, J, according to  Corollary 2 must satisfy 

B' B 
- E (E, small and positive). Since 6, is 1 B tBl 
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1 
aJ; aJ, 

L(t,x(t), a,(t)) + a X (t,x(t)) f(t,x(t), a,(t)) +at (t,x(t)) = 0 

a.e. [t , t -  1. This can be expressed in t e r m s  of J, a s  O B  

However, the last  t e rm is zero because 

- -  
We do not change (t x ) by moving along the trajectory. B’ B 

Application of Theorem A 

Lemma 2 ,  Chapter 3, can now be proved. The partials 

satisfy the (linear) co-state equations and the same inhomogeneous 

boundary condition as the co-state variables, whenever conditions (i) 

and (ii) of Theorem A hold. Thus, they must be equal to the co-state 

variables under these conditions. 

Some Useful Relations 

Certain relations a re  given below which the reader  may find 

These relations a r e  straightforward, but perhaps not 

Lemma A below is used in the proof of 

useful. 

popularly recognized. 

Theorem 9, Chapter 5.  

Theorem B 

Let u(t) be an admissible control over [ t  

Consider the integral 

t ] which produces 
0’ 1 

the solution x(t). 



A J ( t , x )  = J ( t ,x ;u)  = 
U 

for tc[t t 1. The following relation holds a .e .  [ t  oJ t l l "  
0' 1 

U 
aJ a J  

L (t,x(t),u(t)) t -$ (t, d t ) )  f(t, x(t),u(t)) t at (t, x(t)) = 0 

Proof 

and 

5 1  But for almost all  t €[to, 

Substituting this relation into the expression for a J  /a t  and using the 

identity for a J  /ax, the theorem is proved. 

(End of Proof) 

U 

U 

Lemma A 

Let u(0) be an admissible control over [to,t  ] for  a fixed 1 
time, f ree  right end problem. 

Ju (t, x(t))  have the property that 

Let its performance function 
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along the trajectory (t, x(t)) produced by u(' ) o  Then the partials 

(t, x(t)) , a r e  equal to  the co-state variable (P(t), 

P (t)) corresponding to x(t) and u(t). 
0 

Proof 

We first prove that aJ,./ax (t, x(t))  = P(t) even without (B. 8). 

( 

U \ 

Differentiating with respect to t in (B.7) (denoting this by a dot), we 

have 

. Using the relation 
0) 

almost everywhere in [t 

and (B. 7),  it is readily seen that a J  /ax is a solution to the co-state 

equations for  P. 

and a J  /ax is seen to satisfy this boundary condition also. Thus, 

a J  /ax must be equal to P(t) over [to,tl].  

U 

Finally, P(t  ) = 0 for  the f ree  right end problem, 1 

U 

U 

The proof that a J  / a t  is equal to P (t) will require an 
0 

2 U 

allusion to  a proof in Pontryagin's work. 

and the first part  of our  proof, we have 

First of all, by hypothesis 

The right member has been shown by Pontryagin et al., to be ab- 

solutely continuous on [t  

ence 2). Thus, a J  /a t  is differentiable with respect to t almost 

everywhere in [t 08tl14 

t ] (see pp. 101-103, Chapter I1 of Refer- 
0' 1 

U 



’ 82 

From Theorem B we have, a .e .  [t o J  t l l J  

(Be 10) 
U 

aJ 
- at (t, xw)  = - L (t ,x(t) ,  u(t))  - P(t)f (t, x(t), u(t)) 

Let ~ ~ [ t ~ , t ~ ]  be a regular point of u(’)  at which aJ U /at  is differ- 

entiable with respect to t. Let t be any 

point in a small  neighborhood [ 7- E, T +  E]  of T e 

(B. 10) we have 

Then (B. 10) holds for  T .  

By virtue of (B. 9) and 

For sufficiently smal l  E we have 

Substituting these into the above inequality we have 



For  (t-7) > 0 we have 

For (t-7) < 0 we have 

Since a J  /at  is differentiable at T ,  the right and left l imits 
U 

exist and a r e  equal to (8; /a t )  at t = 7 .  Thus, 
U 

at  a l l  regular points T E[t t ] for which (a'J /at)  exists. This is 

the same  equation which P (7) must sat isfy a . e .  [ to,t l] .  We also 

note that at the terminal  time t 

0' 1 U 

0 

1' 

which is precisely the condition which P (t ) must satisfy for  the 

f ree  right end problem. Thus, 8J /at  must be equal to Po(t) on 
0 1  

U 

(End of Proof) 


